

Enteric Fermentation / Enteric Methane

Tim Kurt, DVM, PhD Foundation for Food and Agriculture Research (FFAR)

ARPA-E REMEDY Workshop

October 20, 2020

Introduction/Background

Tim:

- Studied veterinary medicine and molecular biology, focusing on the determinants of susceptibility to cross-species infection and zoonotic diseases. Expertise with in vivo and in vitro models; small molecule inhibitors.
- Scientific Program Director for the Foundation for Food & Agriculture Research's (FFAR) Advanced Animal Systems Challenge Area and ROAR Programs since 2016.

FFAR:

- FFAR is a Federally funded (\$385M to date) nonprofit; supports research addressing food and agriculture challenges via 1:1 matching to non-Federal sources (e.g. State, sovereign, private).
- Relevant portfolio includes investigation of Asparagopsis farming and in vivo trials for enteric methane mitigation, other projects involving animal health / productivity and environmental impact.

Enteric Fermentation – Background

- Approximately 26.7% of methane (CH4) emissions in the **U.S.** are attributed to enteric fermentation in ruminants, corresponding to approximately 2.7% of total GHG emissions in the US (EPA, 2019).
- Total emissions from global livestock: 7.1 Gigatonnes of Co2-equiv per year, representing 14.5 percent of all anthropogenic GHG emissions (Gerber, 2013). 39% is attributed to enteric methane= 2.77 Gt Co2-equiv; 5.66% total anthropogenic GHG emissions.
- Rumen volume: 200L
- Gas, fibrous mat and fluid compartments
- Hardware (magnets, rumen bolus) is commonly placed within rumen for life of animal

can 12% energy loss attributed to methane be recovered?

Enteric Methane – Chemistry

Plants — Carbohydrates / Oligosaccharides

Pyruvate

- Acetate + 2H.
- Butyrate + 2H.
- Propionate (net incorporation of 2H).
- H inhibits carbohydrate fermentation.
- \triangleright CH₄ is the main sink of H in the rumen.
- $ightharpoonup CO_2 + 8H \rightarrow CH_4 + 2H2O$
- > 30-50L gas eructation per hr
- \triangleright Concentration of dissolved H₂ is near 1 μ M (partial pressure of near 140 Pa)

Possible Strategies & Considerations

- Enzyme inhibitor targets
 - methyl-CoM reductases, e.g. 3NOP
 - \triangleright methyl transferases, e.g. bromoform (\rightarrow ozone depletion, toxicity)
- Vaccination
 - Difficult to achieve sufficient antibody levels in rumen (CSIRO)
- Genetics/rumen microbiome
 - Genetic improvement: reductions per unit volume of meat/milk
 - > Rumen microbiome poorly heritable; thus can be targeted separately
 - Ruminal methanogenic archaea are highly conserved globally
- Diet
 - High grain, low forage.
 - ➤ Nitrates. Reduced to nitrite → toxicity
 - Producers of propionate (Quinella ovalis), lactate, and succinate (Fibrobacter, Succinivibrionaceae spp.)
- Others options
 - Bacteriophages (unlikely due to volume of distribution)
 - Hardware-based hydrogen/methane scavengers
 - Cofactor competitors (e.g. coenzyme M analogs)

Enteric Methane - Resources

Rumen Microbial Genomics Network: http://www.rmgnetwork.org/

Methanotroph Consortium: http://www.methanotroph.org/wiki/introduction/

State of the Art Methane Inhibitors

Example 1: 3-Nitrooxypropanol (3NOP)

Established efficacy and safety. ~30% reduction in methane.

Registered in Europe; Not FDA-approved for use in U.S.

No growth promotion/productivity gain; little incentive for adoption without State/Federal mandates or carbon credits.

Example 2: Garlic oil

Generally recognized as safe (GRAS). May alter rumen microbial populations. Questionable efficacy; needs controlled trials.

Not registered in EU or U.S.; labeled as a feed "flavoring" and used off-label for methane reduction.

Example 3: Asparagopsis seaweeds

80-90% methane reduction at low inclusion in diet. MOA unclear.

Possibly has <u>substantial productivity gains</u>; needs to verified.

Regulatory pathway unclear (Drug or Feed Additive? Both FDA).

Safety concerns – bromoform, iodine.

No commercial source and difficult to cultivate.

Rapidly expanding field of startups competing for first in market.

Enteric Methane - Strategies

References 1/3

Beauchemin and McGinn. *Journal of Animal Science*, 2006, Volume 84, Issue 6, Pages 1489–1496, https://doi.org/10.2527/2006.8461489x

Beauchemin and McGinn. International Congress Series, 2006, Volume 1293, Pages 152-155

Beauchemin, et al. Australian Journal of Experimental Agriculture, 48(2) 21-27 https://doi.org/10.1071/EA07199

Calagan et al. Genome Res. 2002. 12: 532-542

Duin et al. PNAS . 2016 113 (22) 6172-6177

Difford et al. PLOS Genetics, 2018, 14(10): e1007580. https://doi.org/10.1371/journal.pgen.1007580

EPA. https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases-livestock.

gases/global-mitigation-non-co2-greenhouse-gases-livestock.

References 2/3

Gerber et al.. 2013. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.

Gottlieb, 2015. <u>Alimentary Pharmacology & Therapeutics</u> 43(2) DOI: <u>10.1111/apt.13469</u>

Hristov et al. PNAS. April 2014, 111(14) E1320; DOI:10.1073/pnas.1401046111

Johnson and Johnson. Journal of Animal Science, 73(8):2483. DOI 10.2527/1995.7382483x ISSN 0021-8812

Knapp et al. Journal of Dairy Science, 2014, 97(6): 3231-3261

Kumar, et al. Appl Microbiol Biotechnol (2014) 98:31–44 DOI 10.1007/s00253-013-5365-0

McGinn et al. *Journal of Animal Science*, Volume 82, Issue 11, November 2004, Pages 3346–3356, https://doi.org/10.2527/2004.82113346x

October 22, 2020

Enteric Fermentation / Enteric Methane

References 3/3

Reynolds, et al. J. Dairy Sci. 2014, 97, 3777-3789.

Romero-Perez, et al. J. Anim. Sci 2014, 92, 4682-4693.

Stefenoni et al. Abstracts of the 2019 American Dairy Science Association Annual Meeting, Journal of Dairy Science, Volume 102, Supplement 1 (W163)

Zhang et al. PLoS ONE, 2015 10(10): e0140086. https://doi.org/10.1371/journal.pone.0140086

Extra Slide – Rumen Chemistry

Carbohydrates / Oligosaccharides

Pyruvate

- Acetate (and butyrate) + 2H.
- Propionate: net incorporation of [2H]. Reduced cofactors
- H2 inhibits carbohydrate fermentation.
- CH4 is the main sink of H in the rumen.

Hexose

Net production (moles) from one mole of hexose

Generation of oxidized cofactors by reduction of carbon dioxide by methanogenic bacteria

NADH + H⁺
$$\longrightarrow$$
 NAD⁺ + H₂
4(H₂) + CO₂ \longrightarrow CH₄ + 2 H₂O

Generation of oxidized cofactors by molecular oxygen arising from the randomizing pathway

$$2(NADH + H^{+}) + O_{2} \longrightarrow NAD^{+} + 2 H_{2}O$$

https://veteriankey.com/digestion-thefermentative-processes/hteric Fermentation / Enteric Methane

Extra Slide – Enteric Methane Inhibitors

Islam and Lee, J Anim Sci Technol 2019; 61(3):122-137

